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1. INTRODUCTION

The micromachining, nanofabrication, and distributed sensor/actuator technologies
enable the implementation of large number of actuators and sensors on a #exible
structure [1]. This massive instrumentation is a part of smart materials and of
smart structures. For example, they are used for the active and passive structural
vibration damping, active and passive noise damping and control, active shaping of
surfaces of radiotelescopes and optical devices, health monitoring of structures, and
shaping of aircraft surface for aerodynamic control. Using the large number of
actuators and sensors requires special algorithms to determine their optimal
locations. The de"nition of optimal location depends on application. Many
techniques were proposed for the determination of the actuator and sensor
locations, see for example references [2}11]. The application of the actuators and
sensors can be extended if one allows for the variations not only of the actuators
and sensors locations but also their gains.

In some structural tests it is desirable to isolate (i.e., excite and measure) a single
mode. Such technique considerably simpli"es the determination of modal
parameters, see reference [12]. This was "rst achieved by using the force
appropriation method, called also the Asher method, see reference [13], or phase
separation method, see reference [14]. In this method a spatial distribution and the
amplitudes of a harmonic input force are chosen to excite a single structural mode.
A technique for the determination of the actuator/sensor locations and their gains,
as presented in this paper, is based on the relationship between the modal and
nodal co-ordinates of the actuator or sensor locations. As distinct from the force
appropriation method it does not require the input force to be a harmonic one.
Rather, it determines the actuator locations and actuator gains, while the input
force time history is irrelevant (modal actuator acts as a "lter). The locations and
gains, for example, can be implemented as a width-shaped piezoelectric "lm.
Finally, it allows for excitation and observation of not only a single structural mode
but also of a set of selected modes, each one with the assigned amplitude. The
presented method applies to both the actuators, and to the sensors. Such actuators
or sensors are called modal actuators or sensors. Modal actuators or sensors in
a di!erent formulation were presented in references [15}17] with application to
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structural acoustic problems. Modal actuator sensors in structural dynamics were
investigated in references [2,18] using the state-space representation and the
concept of the controllability and observability grammians. The presented method
is illustrated with various modal actuators and sensors applied to a clamped beam.

2. MODAL MODEL

A structural model is characterized by its mass, sti!ness, and damping matrices,
as well as by the sensor and actuator locations. It is represented by the following
second order di!erential equation:
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The modal equation (2) can be written also as a set of n independent equations for
each modal displacement:

qK
mi
#2f

i
u

i
qR
mi
#u2

i
q
mi
"b

mi
u, y

i
"c

mqi
q
mi
#c

mvi
qR
mi

, i"1,2, n. (5)

In the above equations, y
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is the system output due to the ith mode dynamics, such

that y"+n
i/1

y
i
, while b

mi
is the ith row of B

m
, and c

mqi
and c

mvi
are the ith columns

of C
mq

, and C
mv

respectively.

3. MODAL ACTUATORS

The task is to determine the locations and gains of the actuators such that n
m

modes of the system are excited with approximately the same amplitude, where
1)n

m
)n, and n is the total number of considered modes. Note that if the ith

mode is not excited the corresponding ith row, b
mi

, of the modal input matrix, B
m
, is

zero. Thus, assigning entries of b
mi

either 1 or 0, one makes the ith mode excited or
not. This assigned input matrix we denote B

m
. For example, if one wants to excite

the "rst mode only, B
m

is a one-column matrix of a form B
ms
"[1 0 2 0]T.

On the other hand, if one wants to excite all modes independently and equally, one
assigns a unit matrix, B

m
"I.

Given (or assigned) the modal matrix B
m

the nodal matrix B
o

is derived from
equation (3). Equation (3) can be re-written as
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m

UT. Matrix R is of dimensions n]n
d
. Recall that the number of

assigned modes is n
m
)n. If the assigned modes are controllable, i.e., the rank of
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, the least-square solution of equation (6) is
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In the above equation, R` is pseudoinverse of R, R`"<R~1;T, where ;, R, and
< are obtained from the singular value decomposition of R, i.e., R";R<T.

3.1. EXAMPLE 1

Consider a clamped beam of 150 cm length, cross-section of 1 cm2, divided into
15 equal elements, as in Figure 1, where the "lled nodes 1 and 16 are the clamped
ones. The vertical displacement sensors are located at nodes 2}15, and the single
output is the sum of the sensor readings. Actuator locations shall be determined
such that the second mode with 0)01 modal gain is excited, and the remaining
modes are not excited. The "rst nine modes are considered.

The assigned modal matrix is in this case BT
m
"[0 0)01 0 0 0 0 0 0 0]T. From

equation (7), for this modal input matrix, a nodal input matrix B is determined. It

o



Figure 1. A clamped beam.

Figure 2. Beam with the second-mode modal actuator: (a) impulse response at node 6, (b) nodal
displacements for the "rst 10 time samples, and (c) actuator gains.
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contains gains for the vertical forces at the nodes 2}15. The gain distribution of the
actuators is shown in Figure 2(c). Note that this distribution is proportional to the
second mode shape. This distribution can be implemented as a piezoelectric
actuator. Consider a case when the gain of the piezoelectric actuator is
proportional to its width. Thus, the shape of a hypothetical piezoelectric actuator
that excites the second mode is shown in Figure 3.

For the input and the outputs de"ned as above the magnitude of the transfer
function is presented in Figure 4. The plot shows clearly that only the second mode
is excited. This is con"rmed with the impulse response at node 6, Figure 2(a), where
only second harmonic is excited. Figure 2(b) shows the simultaneous displacement
of nodes 1}16 for the "rst 10 time samples. They also con"rm that only the second
mode shape was excited.



Figure 3. Piezoelectric actuator width that excites the second mode.

Figure 4. Magnitude of a transfer function with the second-mode modal actuator.
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If one wants to excite a mode with a certain amplitude, one needs to scale (or
weight) properly the input matrix B

m
. The H

=
norm is used as a measure of the

amplitude of the ith mode. In case of a single-input}single-output system the H
=

norm of the ith mode is equal to the height of the ith resonance peak. In case of
multiple inputs (or outputs) the H

=
norm of the ith mode is approximately equal to

the root-mean-square sum of the ith resonance peaks corresponding to each input
(or output), see reference [2]. It is approximately determined as [2]
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De"ne the weight matrix ="diag(w
1
, w

2
,2, w

n
), then the speci"ed matrix that

sets the required output modal amplitudes is

B
mw

"=B
m
. (10)

3.2. EXAMPLE 2

The same beam is considered. All nine modes need to be excited by a single
actuator with the amplitude of 0)01. Therefore, the assigned matrix B

m
is BT

m
"

0)01][1 1 1 1 1 1 1 1 1]T, and the weighting matrix is obtained from
equation (9). The resulting gains of the nodal input matrix B

o
shown in Figure 5(c)
Figure 5. The beam with the nine-mode modal actuator: (a) impulse response at node 6, (b) nodal
displacements for the "rst 10 time samples, and (c) actuator gains.



Figure 6. Piezoelectric actuator width that excites all nine modes.

Figure 7. Magnitude of a transfer function for the nine-mode modal actuator.
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do not follow any particular mode shape. The width of a piezoelectric actuator
that corresponds to the input matrix B

o
and excites all nine modes is shown in

Figure 6.
The plot of the transfer function of the single-input system with the input matrix

B
o
is shown in Figure 7. The plot shows that all the nine modes are excited, with

approximately the same amplitude of 0)01 cm. Figure 5(a) shows the impulse
response at node 6. The time history consists of nine equally excited modes.
Figure 5(b) shows the simultaneous displacement in y direction of all nodes. The
rather chaotic pattern of displacement indicates the presence of all nine modes in
the response.
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4. MODAL SENSORS

The modal sensor determination is similar to the determination of modal
actuators. The governing equation is derived from equation (4). If one wants to
observe a single mode only (say ith mode) one assumes the modal output matrix in
the form C

mq
"[0 2 0 1 0 2 0], where 1 stands at the ith position.

The corresponding output matrix is obtained from equation (4),

C
oq
"C

mq
U`, (11a)

where U` is the pseudoinverse of U. Similarly, one obtains the rate sensor matrix
C
ov

for the assigned modal rate sensor matrix C
mv

,

C
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mv
U`. (11b)

Above we assumed that the assigned modes are observable, i.e., that the rank of U is
n
m
, where n

m
is the number of the assigned modes.

Multiple modes with assigned amplitudes are obtained using sensor weights. The
weighted sensors are obtained from equation (8). Namely, the ith weight is
determined from
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where EG
i
E
=

is the amplitude of the ith mode.

4.1. EXAMPLE 3

The beam from Figure 1 with three vertical force actuators located at nodes 2, 7,
and 12 is considered. Find the displacement output matrix C

oq
such that the "rst

nine modes have equal contribution to the measured output with amplitude 0)01.
The matrix C

mq
that excites "rst nine modes is the unit matrix of dimension 9 of

gain 0)01, i.e., C
mq
"0)01]=]I

9
. The weights= that make the mode amplitudes

approximately equal were determined from equation (12). The output matrix C
oq

is
determined from equation (11). For this matrix the magnitudes of the transfer
functions of the nine outputs in Figure 8 show that all nine of them have
a resonance peak of 0)01.

4.2. EXAMPLE 4

The beam from Figure 1 with actuators as in Example 3 is considered. Find the
nodal rate sensor matrix C

ov
such that all nine modes but mode 2 contribute equally

to the measured output with the amplitude of 0)01.
The matrix C

mv
that gives in the equal resonant amplitudes of 0)01 is C

mv
"0)01]

=][1 0 1 1 1 1 1 1 1], where the weight = is determined from



Figure 8. Magnitude of the transfer function with the nine single-mode sensors for the "rst nine
modes.

Figure 9. Magnitude of the transfer function with the nine-mode sensor (solid line), and for the
eight-mode sensor (dashed line). The latter includes the "rst nine modes but the second one.
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equation (12), and the output matrix C
ov

is obtained from equation (11b). For this
matrix the magnitude of the transfer function is shown in Figure 9, dashed line. It is
compared with the magnitude of the transfer function for the output that contains
all the nine modes (solid line). It is easy to notice that the second resonance peak is
missing in the plot.
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